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The theory of van der Waals forces is generalized in order to include the effects of solvent
structure by explicitly dealing with the spatial correlations between the solvent molecules. This
is achieved within the framework of nonlocal dielectric response theory, with the specular
reflection approximation to apply the nonlocal response of the structured solvent in the bulk to
give the response of such solvent intercalated between the interacting macroscopic surfaces. A

solvent structure effects in the macroscopic theory of van der Waals forces

closed form expression for the zero-order contribution to the van der Waals free energy is
derived for two semi-infinite dielectric regions (characterized by a standard, local dielectric
response and fixed dielectric constant), interacting across a layer of a structured solvent
described by a nonlocal dielectric response function. The nonlocal character of the latter gives
rise to several quantitatively and qualitatively new features of the dispersion interaction; the
most important ones are similar in consequences to the effects of spatial variation of the
Hamaker coefficient, as seen from the particular case of solvents with an exponentially

decaying spatial intersolvent correlations.

I.INTRODUCTION

By and large, the long-range attractive forces between
uncharged macroscopic dielectric bodies are due to the fluc-
tuations of the local charge density in these bodies. They are
collectively named van der Waals forces and are typically
appreciable even at separations greater than 10 nm.

Fluctuations of the local charge density in general give
rise to some effective local dielectric polarization. This local
polarization then acts as a dipolar field, induces correlated
polarization in other polarizable matter and results in a net
attraction between the induced and inducing fields. The po-
larizability of the interacting bodies is therefore essential for
the existence of van der Waals forces. Noteworthy, thermo-
dynamically induced fluctuations contribute only to the po-
larization and orientation forces while the electronic disper-
sion part of the total van der Waals force is always of
quantum mechanical origin.'

The ordinary van der Waals force is calculated in the
simplest approximation by pairwise summation of the dis-
persion-, orientation-, and induction-dependent interactions
between all molecules. This is the London-Hamaker ap-
proach'~** which, however, is only of limited value for the

T description of interactions between macroscopic bodies, be-
§ cause of its inherent, unjustified additivity assumptions.

A more rigorous and powerful method of dealing with
dectrodynamic fluctuations has been pioneered by Lifshitz’

{ ud further developed by Dzyaloshinskii, Lifshitz, and Pi-

taevskii (DLP).* These authors have succeeded in resolving

} the problem of additivity of interactions by analyzing in de-
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tail the contributions to the total pressure of the electromag-
netic field fluctuations for a nonhomogeneous dielectric sys-
tem. As a result of this, the total pressure can be expressed as
a functional of temporally dispersive, i.e., frequency-depen-
dent dielectric functions of the media involved.

The original, but mathematically rather involved, treat-
ment of DLP has been simplified considerably by Van Kam-
pen, Ninham, Parsegian, and colleagues,>™ who have con-
sidered van der Waals interactions as a result of the
dependence of the eigenfrequencies of various electrody-
namic surface modes on the interfacial separation. For the
free energy (F) of nonretarded van der Waals interactions
between two semi-infinite plan parallel dielectric regions
separated by a slab of third dielectric medium with thickness
2a they have obtained the result®

_ KIS ir QdQ1n D(Q,,0.a)
0

47 n=0

F

= — _iz , (1
127 (2a)

where D((},,,0,a) is the secular determinant of the electro-
magnetic modes, k7 is the thermal energy, S is the surface
area, and ), are the boson frequencies Q, = 27n (kT /h)
with & being Planck’s constant. The zeros of D(Q,Q,a) give
the normal mode frequencies of the electromagnetic field as
a function of the interfacial separation and of the in-plane
(transversal) wave vector Q. The prime in the summation
indicates that the first term n = 0 is multiplied by .

The effective parameter H introduced in Eq. (1) is the
Hamaker coefficient and is essentially an empirical param-
eter in the London-Hamaker approach. Conversely, both
the heuristic as well as the DLP theory of van der Waals
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forces provide means for the calculation of this parameter H
[cf. Eq. 2(b) ] in terms of the dielectric absorption spectra of
the interacting dielectric media.

The main advantage of the heuristic approach is that it
often provides exactly the same results as the mathematical-
ly much more demanding DLP theory. This may also ex-
plain the widespread—but erroneous—belief that the two
approaches can be used interchangeably. In fact, the simpler
heuristic theory is much less general than the DLP ap-
proach. It is being inappropriate, e.g., for the description of
van der Waals interactions between dielectric bodies im-
mersed in structurable media, including water, at close sepa-
rations, as we shall show here.

To illustrate this and to introduce a correct procedure
for the effective elimination of the problem just mentioned,
one can explore the expression giving the free energy [Eq.
(1)] of nonretarded van der Waals interactions>” in the case
of two identical, semi-infinite dielectric regions “1” with a
relatively low dielectric constant interacting across a layer of
material “2” with different dielectric properties and with
thickness 2a. The result is*’

F()=@ U QdQIn[1 — a2,

n=0
X exp( — 4Qa)]] . (2)

The reflection coefficient @, introduced in Eq. (2) is a func-
tion of dielectric premittivities €;:

a, = €,(Q,) — (iQ,)/6,(iQ,) + 6(iQ,), (2a)

which must be evaluated at imaginary (boson) frequencies
(Q, =nx25x10" s "at 300K).

After expansion of the logarithmic term in Eq. (2) and
truncation at the lowest order term,' the Hamaker coeffi-
cient is found to be given by

=§-[kT(6‘ - 62)2 n if‘” [el(ix) — €,(ix) de]
4 €+ 6 7 Jo, L€, (ix) + €,(ix)

(2b)
with €; now being identical to the static dielectric constant
€; (21 =0). The Hamaker coefficient for two hydrocarbon
layers interacting across a water filled region evaluated from
the approximate expression (2b) agrees to within 95% with
the exact result deducible from Eq. (2). It yields a value of
H~3-6x10"?" J,' the measured value being
H~7+1x10721J.%

The handicap of all common approximations for the cal-
culation of van der Waals interactions is that they account
for the dispersion-, orientation-, and induction-dependent
interactions, but typically make no allowance for the effects
of the spatial correlations between the solvent molecules,
i.e., for the solvent structure. This is a severe shortcoming
which becomes for most practically relevant media particu-
larly manifest at small interfacial separations.

The reason for this is that at large interfacial separa-
tions, the electric field in the intervening region 2 varies only
slowly with the transversal coordinate so that the dielectric
response in this region is governed by the usual static dielec-
tric constant, for water €, = € ~78-80. For smaller interfa-
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4
cial separations, however, the spatial variation of the elecuj;
field within the region 2 becomes so rapid that the solvep
molecules can no more strictly follow the field’s dictate at gf
places. The dielectric response of the solvent in this cagé
determined by an effective dielectric constant which ism
lower than in the previous case; ultimately, the value of f
constant may even become similar to that of the regions}
To see how the solvent structure influences the van dg
Waals interactions, it is therefore sufficient to consider tf§
zero-order contribution to Eq. (2) with appropriate die
tric constant values

w 2\2
Fo(a) =@f 0do ln[l _ (u)
47 Jo €, +¢€

X exp( —4Qa)] .

If the magnitudes of €, and €, become comparable, the in ‘
facial attraction gets markedly smaller than that typical g
the large interfacial separations, reminiscent of a diminut;
of the total effective Hamaker coefficient.

In this work we investigate such effects theoretically
We present a detailed study of the contribution to van d§
Waals attraction from the solvent between two parallg
planar, semi-infinite dielectrically homogeneous regio
For this, we adopt the method of nonlocal electrostati‘
Firstly, because in our view this is the natural way of imp o
menting the effects of spatial intersolvent correlations ing
macroscopic theories of van der Waals forces. Whereas ¢ :
sical models of dispersion force are concerned with the t:g
dispersion in the interacting dielectric media, and therefog
involve the frequency dependent dielectric permeabili
€(w), the nonlocal electrostatics deals with the spatial di
electric dispersion in order to allow for the effects of solv
structure, and correspondingly explores the behavior of
wave-vector dependent permittivity €(k,w = 0). The no;

ward modeling of the solvent structure than, e.g,
theories of liquids. :

ories in dealing with structural forces in aqueous solu-
tions.'''* This approach, however, is as yet not appllcabletg
the analysis of oscillatory forces superimposed on the monOs
tonous component, observed in some systems.”*’ :

Il. TEMPORAL DISPERSION IN DIELECTRIC MEDIA

As already noted, the van der Waals force depends 0f
the polarizability of the media involved.
For a dielectric continuum or a structureless solvef
the relation between the dielectric displacement vel
D(r,?) and the electric field vector E(r,t) is

D(r,t) = €,E(r,t) + P(r,t),

where ¢, is the permittivity of free space. 4

Normally, however, the induced polarization P(r,t)‘
not perfectly synchronous with the electric field, as the fof
mer depends on the electric field at all previous times (s
e.g., Refs. 2 and 10). Formally, this can be expressed as-
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P(r?) =¢ fwf(v)E(r,t —v)dv
0

with function f (v) describing the time decay of polariza-

tion.
If the field fluctuates in time according to

E(rt) = E(r,o)exp( — int) ,

where o is frequency, the resulting dielectric displacement
vector is given by

D(r,w) =60E(r,a))[1 + wa(v)exp( -—cov)dv]
0

= g€ (@)E(r,w) , 4)

so that Eq. (4) now defines a complex dielectric function of
the medium at real frequencies € (w ). This and the Kramers—
Kronig relations,” which express €(iw) through €(w), pro-
vide a basis for the evaluation of van der Waals forces from
Egs. (2) and (2a).

Variation with frequency of the function €(iw) is very
simple.” It takes on only real values; at @ = Oit is identical to
the static dielectric constant and then decreases monotoni-
cally towards the value of € ~1 as the field frequency in-
creases.

If the dielectric decay function f/ (v) is approximated by
asum of exponential terms of the form

N
f)y= 3 fiexp(—Qu), (5)

i=1
where f; gives the strength of relaxation, the frequency de-
pendence of the dielectric constant is found to be
N (fi/))
e(iw) =1+ _—_—
i;l [1 + (w/ﬂi)z]

Ifparameter values of Eq. (6) are known or postulated, this

(6)

{ result can be used directly to evaluate van der Waals free

energy from Eqgs. (1) and (2).

| 1. SPATIAL DISPERSION IN DIELECTRIC MEDIA

In the static case (o = 0), with the absence of any inter-
solvent correlations, the electric polarization P is at every
point proportional to the imposed field E:

P (r) = xuE, (r) (N
the proportionality constants being identical to the elements

{ ofthe standard dielectric susceptibility tensor. [In Eq. (7)

and later, the Einstein convention on the summation of in-
dices is used. ]
From macroscopic electrostatics, which implies that the

{ rclation between the field and polarization is Jocal through-

out, the susceptibility tensor of the solvent is deduced to be
merely a function of the dielectric constant tensor €, :

P, (r)= €(€x —8,)E (1),

{ vhere &, is the Kronecker symbol.

For most solvents including water, the previous state-

g xents and Eq. (7) are not always strictly valid,>! however,
4 ving to the correlations between the solvent molecules. A
g wint-like field in a structured medium, e.g., creates a re-
§ wonse that is not limited merely to the site of its origin, but
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due to the intermolecular coupling rather extends over a fin-
ite distance of the order of the solvent correlation length £.
Such a behavior is typical of all structured fluids,?” irrespec-
tive of the detailed molecular mechanism by which the fluid
components interact.

Formally this means =31 that in the expression for
the electrostatic polarization, the classical local electrostatic
relation (7) must be replaced by the nonlocal expression

11-14,2

P,(r) = fxik(r,r’)Ek(r’)d3r’, (8)
| 4

where y ;. (r,r’) the static dielectric susceptibility tensor de-
pends on the type and strength of intermolecular coupling
and integration encompasses the volume in which the medi-
um polarization fluctuations are correlated.

Rewritten in terms of the dielectric displacement vector
and of the dielectric parameters of the system, Eq. (8) reads

D;(r) =60J. €x (r,r")E, (r')d > (9)
Vv

and implies that in the nonlocal electrostatic approximation
the standard static dielectric constant is replaced by an inte-
gral operator €, (r,r',o = 0). The latter is also called gener-
alized permittivity or the nonlocal dielectric response func-
tion. Equation (9) then becomes identical to the classical,
local constitutive relation

D(r) = €€, E(r)
solely if

€x (rr') = €6, 6(r—r'), (9a)

where 6(r) is the Dirac delta function.

For three-dimensional, isotropic, translationally invar-
iant media, the kernel of integrals in Egs. (8) and (9) is
diagonal and depends just on the separation (r — r’). These
expressions are therefore in the form of a convolution inte-
gral and it is useful to introduce the Fourier transform of the
dielectric response function, the so-called spatially disper-
sive static dielectric function €(k) = e(k,w = 0). This cor-
responds to the supposition that for each plane wave with a
wave vector k, the relative permittivity e (k) attains a differ-
ent value.

Obviously, for short-wave vectors, the value of e(k) is
identical to the usual static dielectric constant of the medium
€ = €(w = 0). With increasing length of k, however, the val-
ue of e(k) decreases until it finally becomes indistinguish-
able from the high frequency dielectric constant
€, =€(w—- ).

Spatial intermolecular correlations coupled to the inter-
facially induced polarization have been shown, both theoret-
ically'’~'* and experimentally'*~?® to be able to create a
strong interfacial repulsive force which, at least for separa-
tions less than a few nanometers, exceeds other types of mid-
dle- or long-range repulsions. Such force is called solvation
force; its ubiquitous importance has been substantiated par-
ticularly for aqueous solutions for which the force was
named hydration force.

Experiments performed with a variety of hydrated ma-
cro- and supramolecular systems, including lipid bilayers
and DNA strands have shown that hydration force may give
rise to interfacial repulsion as large as 10° Pa, decaying ap-
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proximately exponentially on a length scale of 0.15<£ <1
nm. In principle, such hydration force could be due to the
dipolar or multipolar interfacial interactions.’">* It seems,
however, that the largest part of it is a consequence of water
structure effects. Correspondingly, it may be modeled with-
in the framework of nonlocal electrostatics because in this
approach the correlations between the solvent molecules are
inherently dealt with in terms of the dielectric spatial disper-
sion of the medium.'*'*

At least for the associated solvents, such as water, the
intermolecular coupling effects thus may be taken to die
away exponentially on the length scale of the correlation
length &. Translated into the language of nonlocal electro-
statics, this means'>?° that for structurable media, the fol-
lowing form of the spatially dispersive dielectric function
should be used:

€e—e€,
(1+§2k e/e,)’

where the parameter values appropriate for water are e =78,
€., ~2-6, and the correlation length is 0.15 <£ < 1.0 nm.
Formally, Eq. (10a) is identical to the Inkson model dielec-
tric function of solid state physics.’’

Based on an effective Hamiltonian and measured dielec-
tric dispersion curves, Dogonadze and co-workers* have
proposed the following extended form of the expression
(10a):

ek)y=¢€ (10a)

N € — €

e(k) = Z € +

< (1+&%k? /e

which is remarkably similar to Eq. (6) except in that it per-
tains to the spatial rather than to the time dispersion in the
dielectric medium. Parameter ¢; in Eq. (10b) gives the value
of the dielectric permittivity just above the ith maximum of
the dielectric dynamic absorption spectrum.

(10b)

IV. FREE ENERGY OF DISPERSION INTERACTION IN
THE NONLOCAL ELECTROSTATIC MODEL

Recently Barash and Ginsburg have rederived a re-
sult,>?3* which is as general and accurate as any of the DLP
theory despite the fact that it starts with the premises and
assumptions used commonly in the heuristic derivations of
Eq. (1).

Specifically, these authors have shown that the free en-
ergy of electromagnetic fluctuations between two parallel,
interacting surfaces can be expressed’” as

Fe kréo' Uo —-Sg:Q In D(Q,,0,a)

+ Trln €, (r,r',i}, )] + const. (11)

The trace operator Tr stands for the sum (summation over
indices and integration over r) of the diagonal elements of
the matrix function In €, (r,r',iQ},, ) and other symbols have
their usual meaning. The value of the constant in Eq. (11) is
such that it makes the free energy of vacuum fluctuations
vanish.*}

Equation (11) is similar to, but more general than, Eq.
(1) because it accounts for the contribution of the surface as

well as bulk longitudinal modes, determined by the zeros
the secular determinant and the dielectric function, respe
tively, to the free energy. The latter contribution, embodig
in the trace term, is of paramount importance for the d
scription of van der Waals forces within spatially dispersj
media.

The free energy of van der Waals interactions, e.g., c:
be found from Eq. (11) by calculating the difference

V(a) =F(a) —F(a- ) . (1

If the constitutive relation in the space domain is a local on
cf. Eq. (4), and the volumes of all dielectric regions are co
stant,>* the bulk modes are independent of the interfaci
separation and Eq. (11) reduces to the result of Ninham
al ® This ceases to be true, however, if the dielectric respon
function €, (r,r',0) is an integral operator for which t|
trace term in Eq. (11) becomes a function of the interfaci
separation. In the latter case, this trace term must not t
omitted, implying that the heuristic approach, which leac
to Eq. (1), is inapplicable to the systems with a spatiall
nonlocal dielectric response function.

V. SPECULAR REFLECTION MODEL

In order to apply Eq. (11) to the calculation of nonr
tarded, zero-order van der Waals forces, solutions to the a)
propriate Laplace equation must be found and simult
neously the secular determinant and the trace term must ¢
evaluated, for each particular model expression of the diele
tric response function.

Our model system consists of two dielectrically unifor
half-spaces, separated by a layer of structurable, i.e., ¢
“nonlocal” dielectric solvent confined to the region |z|<
(Fig. 1).

The bulk structurable solvent is described by an 1sotro]
ic, translationally invariant dielectric function

€ (r,r') =€(r—r")d, .

The existence of the boundaries, however, causes the is
tropy of the system to break down, at least in the interfacil
region, leaving the system translationally invariant only i
the transversal, (x,p) directions. In terms of the transvers:
radius vector p = (x,p), the kernel of Eq. (9) then become
€x(rr) =€, (p—psz2) .
If the spatial dependence of €, (p — p';2,2") for |z|, |2'| <
were known, the solution to the problem would be only.
matter of mathematical manipulations. Unfortunately, hoy
ever, this information is, in general, not readily avallable,
that one is confined to using plausible models. ;‘?
For a point source of electric field at site z', the tot4
dielectric response D at some other site z is a sum of tﬁ
direct response——determmed by the Green’s function of j
bulk dielectric €( P— p';z — z')—and of the multiple refl
tion terms that arise from the existence of the bounding sng
facesatz = + a (Fig. 1). To describe the latter, the speculj
reflection approximation may be applied, which can be l!
terpreted in the following manner.364>44:3° .
Imagine that the entire space is filled with a bulk dxelel
tric medium into which fictitious point sources of the electg
field are inserted at the points of mirror images, i.e., at z@
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FIG. 1. Schematic representation of the specular reflection approximation
for a nonlocal dielectric medium between two plan parallel semi-infinite
regions at z= ta. Every term in the sum [Eq. (13)] corresponds to
specular reflections of a beam traveling from z to z". The first specular reflec-
tion corresponds to the path from z to z{, the second to the path from zto z;,

etc.

viz.zl, = 2' 4+ 2n2a,2a — z' + 2n2a, with n being an integer
— o <1 < . These hypothetical inputs then contribute to
the total response of the system at z, with the bulk Green’s
function given by €(p — p'; z — zj, ). Owing to the spatial
isotropy of this function and of the bulk medium, the specu-
lar reflection approximation now implies that the anisotrop-
ic dielectric function of the bounded medium is

oo

.(22)= Y €@2n2a+z-2)
— i e[@Rn+1)2a+z+72],
@)= 3 e(n2atz—2)

+ i ef@Rn+1)2a+2z+2] i=xyp,
n= — o (13)

where the explicit dependence of the dielectric functions on
p— p’ has been omitted for the sake of simplicity.
Equations (13) embody the modifications in the dielec-
tric response of the medium caused by the proximity of the
interfaces. The right-hand side of Eq. (13) depends only on
the components of the bulk, isotropic dielectric function of
4 the unbounded dielectric. The left-hand side, however, de-
wribes the dielectric response in the region |z| <a and

?|<a, which due to the presence of the interfaces is no
lnger spatially isotropic. It is clear that as a— o, €; (2,2)
teduces to the bulk form €, (z — 2').

The constitutive relation Eq. (9) depends on the rela-
3 tion between the real field inside a dielectric medium and the
Alypothetical field at the sites of the images (which are here
4 tnoted by the same letter). The choice of the latter field
{ tereby must be such that its symmetry is identical to that of
e dielectric function
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E,(z+2n2a) =E,(z2), (14)
E,(z+2a)= —E,(-2),
E (z+2n2a) =E,(z), (i=xyp),
Ei(ZiZG)=Ei(—Z), (i=xy).

The postulate of specular reflection is thus equivalent to as-
suming that the components of the electric field and of the
dielectric response function in the direction parallel or per-
pendicular to the surface are even or odd, respectively, with
regard to an inversion about the interfacial plane.

It should be pointed out that the approximations under-
laying Eqgs. (13) and (14) are all of limited validity,*® appro-
priate only for the studies of the static properties of the di-
electric media enclosed between two interfaces. In this work
this is not a major obstacle since our analysis will be limited
to the static n = 0 term of Eq. (11) anyhow, this being con-
sistent with the restrictions inherent to the specular reflec-
tion model.

Using Egs. (13) and (14) to express the constitutive
relation (9), one gets

+
D,(p:z) = eof f €;(p—pz—2)E (p.2)dpdz,
S - o0
(15)
a typical convolution-like result suitable for further calcula-
tions.
However, owing to the symmetry of the system [cf. Eq.

(14)], the electric potential also is a rather simple function
of the transversal coordinate z:

(p2) =% S [81(pkycos k, (z +a)
n=0

+ ba(pk,)cos k, (z— )],
where k,, = n(w/2a).

Expressions (15) and (16) provide a basis for the calcu-
lation of the secular determinant for all modes of the electric
field in specified geometry, but here only the » = 0 term of
Eq. (11), which is always nonretarded,’ will be dealt with.

The secular determinant in the nonretarded limit can be
obtained from the Laplace equation®”

divD(r) =0 (17)

with boundary conditions requesting that the electric poten-
tial and the dielectric displacement are continuous at both
interfaces z = +a.

Surface modes correspond to the plane waves in x,p di-
rections

é(p,z) = #(Q,2)exp(iQp) . (18)

If the constitutive relation in the specular reflection model
(15) is combined with Eq. (16), the Laplace equation for
the region |z| < a is the following:

(16)

2 )
&3 Sk +0ve@k, )8, @k)
i=1 =0
Xcosk,,[z—(—l)‘a]]=0, (19)

where €(Q,k, ) is the Fourier transform of the dielectric
function of the bulk dielectric medium
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d*Qdk,

€(Qk,) = fJ e(p2)exp{i[Qp + k,z] }——~ 2r)

From Eq. (19), the electrostatic potential 4, , (Q,k,, ) can be

Podgornik, Ceve, and Zeks: Structure effects in macroscopic theory

found by simulating the boundary conditions in the form
two layers of the induced surface charge with densit;
F,(Q) and F,(Q) at z = + a, respectively. The solution
the Laplace equation is then

@) + H(Q)cosk, (z+a)]

1 &, [Fi(Q)cosk, (z -
$Q2) =— 3 eo(k2 +Q2e(Qk,)

For |z| > a, the results for the electrostatic potential are of
standard form, since in this region the constitutive relation is
a local one with €, (r,r') =¢€,,8; (r —r’'). Corresponding-
ly, one has

$(Q.2) = (1/€4€,, ) F;(Q)e%+;

and

$(Qz) = (1/€0€,, ) F4(Q)e =2~ 2, (22)

The boundary condition for the continuity of the electric
potential $(Q,z) atz = + a provides further relations from
which the induced surface charge densities F,(Q) and
F,(Q) are deduced

Fi(Q)L(Q0) + F,(Q)L(Q; - 2a)

zZ< —a 21)

zZ>a.

_F3(Q)/6m -
(23a)
Fi(Q)L(Q;2a) + F,(Q)L(Q;0) — F,(Q)/€,, =0. (23b)

Parameters F;(Q), F,(Q) are determined by two additional
equations derived from the continuity of the dielectric dis-
placement D, (Q;z) condition

Fi(Q) + 9F(Q) =0 (24a)

F,(Q) + QF,(Q) =0. (24b)
In Egs. (23), we have used

1 & cos K,z

L = 2 W T ohe@n) 2

and
.1 & k,sink,z
lim — _—=1. (26)

Ultimately, Egs. (23) and (24) can be combined into a final,
condensed form:

S 4x(Qa)F, (Q) =0 (27)
k

where matrix 4 contains all coefficients of F; encountered in
Eqgs. (23) and (24).
The system of linear equations (27) has a nontrivial
solution only if its determinant
det 4, (Qa) =D(Qia) = [(1/€,,) + QL(Q;0)]?
— Q’L*(Q;2a) (28)

is equal to zero. It can be verified easily that in the limit of
large separations a — o, this result reduces to

det 4, (Qa— w) = [(1/€,,) + QL(Q)]? (29)
with
L(Q)=r ak (30)
o (k24 0%e(Qik,)
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(A

IThe eigenfrequencies of the electromagnetic field, i.e., tt
secular determinant for the electromagnetic modes in a gi
en geometry, are obtained for each particular dielectric
sponse if the functional dependence of the latter is incorpy
rated into Eq. (28) and its zeros are found. In a differes
context, Eq. (28) has been investigated by Kliewer an
Fuchs.*®

VI. FREE ENERGY OF DISPERSION INTERACTION IN;
THE SOLVENTS WITH AN EXPONENTIALLY DECAYIM
RESPONSE FUNCTION

Both characteristic frequencies of the aqueous soly
tions, the Debye relaxation frequency, and the relaxatu;
frequency of ionic plasma are much smaller than even th
lowest boson frequency ({,_,), being approx1mate
107" and 107'2 s~ respectively. As long as the stat]
n = 0termin Eq. (11) is treated according to nonlocal eleq
trostatics, the higher order terms (# > 1), therefore, may b
dealt with as if they originated from an ordinary dielectr]
medium characterized by a standard local response,*> witk
out any need for nonlocal electrostatic modeling.

We will therefore restrict our calculations to this statu
term which will be rewritten as

=l<£[

%

" 5049 In D(Q,a)
) 27

+ Trln €, (r,r', o = 0) | + const. (31-‘3

implying that the zero-order free energy is determined solel‘
by the molecular orientation and polarization effects.

For most structurable media, the orientational and po
larization effects are associated with the dielectric response
in the static and microwave regions of the absorption spec:
trum, the effective dielectric constant in the latter region
being much smaller than in the former. It has been showq
that the simplest approximation for the dielectric functxon@
such charge-free dielectric medium (in our case 2) in thi,g
frequency range is given by Eq. (10a), with € = 78, €,
6, and £~0.15-1.0 nm.? In contrast to this, the dielec ;
response within the region 1, that is filled with the nonst
turable material, is determined entirely by a constant diele
tric permittivity value, which for hydrocarbons is =2
6’74 noteworthy, the dielectric permittivity in the intef
facial (phosphohpld headgroup and ester bonds) reglon
likely to be ~30.%*

A formal difficulty with Eq. (31), which has to be o
come, arises from the inclusion of the vacuum fluctuation
into the constant term. Here one would, strictly spea




R

have to deal with infinite frequencies to which the model
expression (10a) is not applicable. To retain the consistency,
it must be postulated, therefore, that at exceedingly high
frequencies the dielectric response of all the media involved
in the calculation fulfills the condition € (w —» « ) = € , with
¢,, taking the same value as in Eq. (10a). With this amend-
ment, Eq. (31) can be rewritten as

F—-—[ 5QdQ | D(Qa)
°" 2l 27 D (Qsa)

+ Trilne,(ry') —Trine

(32)

where index o« now conforms with the definition just given.
The meaning and form of the secular determinant in Eq.
(32) have been discussed along with Eq. (28). The trace
term Tr In €, (r,r'), in Eq. (32), however, has a new and
deep meaning that deserves extra attention.
The form of Eq. (19) indicates that the introduction of
the specular reflection approximation is formally equivalent
to the assumption that the transversal k, component of the
wave vector attains only discrete values. Correspondingly,
the trace term in Eq. (32) can be rewritten as

Trln e, (rr') = JW 5040 i "Ine(Qsk,,) (33)
o 2m =

in analogy with Eq. (19), so that by combining Egs. (32)

{ and (33), one finally gets

D(Qa) i e(Qk)] (34)

kTSf ¢ Q[ D (Qa) o

Owing to the symmetry of the electric field, Eq. (28) can be
written so as to consist only of the products of purely odd
and purely even terms with respect to the summation over #.
To achieve this, the difference of squares from Eq. (28) is
rewritten as a product of the sum and of the difference of
these two factors. Correspondingly Eq. (28) can now be
written as
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Q + o 1 1
Deven = +_.
a ,l;_w (k2 +0%e(Qk,) €,

(even)
By means of the Poisson summation formula (see Appendix
A), Eq. (35) can be solved for any reasonable model dielec-
tric function, e.g., such as that given by Eq. (10a). In this
latter, special case, the result is

(37)

Dyyy = [—L+'1—CthQa + (—1"— - —l—)gcth(ua)] ,
€, € €. €/u
(38a)
D,.. = [—l-+—1—thQa + (L — _I_)ch(ua)] ’
€, € €, €/u
(38b)

withw? =Q? 4+ £ 72

For vacuum fluctuations, the secular determinant is ob-
tained simply by equating in Eq. (35) the parameter values
€, =€ =¢€_, as discussed previously, i.e., by setting

D_(Qa) =€2i[1 —exp(—40a)]" (39)

The last term in Eq. (33) can be evaluated using the logarith-
mic summation formula (cf. Appendix A). It yields

& k) &y (L u/kD)
; €., zo (14+w/k?)
_ nsh(uZa) (40)
sh(w2a)
withw? = Q2 + €_ /e£ . Analternative form of Eq. (40) is
i G(Q,k) _ p Ll —exp(—4ua)]
- €., [1—exp(—4wa)]
+ (4 —w)2a. (41)

The first term on the right-hand side of Eq. (41) scales as the
surface area (S) and the second as the volume of the struc-
turable region (S 2a). This is seen from introducing Eq. (41)
into Eq. (34) and permits both logarithmic terms in Eq.
(34) to be combined into one, area-dependent contribution.

§ The volume term now reads

_kTV £

44
477'3 (44

- 0]

o

D(Q;a) =DevenDodd ’ (35) . . .
(Such rescaling in the free-energy expression then reflects
{ vhere the fact that some of the bulk modes in the specular reflec-
D — Q *= 1 1 (36) tion approximation contain admixed surface modes.*®)
o =y =§; . (k2 +02)e(Qk,) + Z ’ Finally, by using the definition (12) together with Egs.
(odd) (29) and (30) in the limit a— «, one gets
J
—2(u+ Qa2 __ — 2ua —20a12
V(a)=kTSJ‘ QdQl.[l+a(11)e ] [a(421)e +a(12)e ] (42)
(1—e™™)
with
1 1 1
(=D (- 1)"(;— - :)%
alik) = 6;" T g . k=12, (43)
Ly
€ € €, €/u
r

and the result should be taken at the indicated limits. This
term attains zero value when the volume of the dielectric
region 2, enclosed by the two surfaces is constant, but it is per
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se insensitive to the existence of the dielectric discontinui-
ties. Correspondingly, expression (44) has nothing to do
with van der Waals interactions. It represents merely a con-
tribution to the free energy from the bulk dielectric medium.
This aspect is clarified further in Appendix B.

VIl. EXAMPLES AND DISCUSSION

The main implications of our results can best be illus-
trated by showing how the spatial dielectric dispersion, i.e.,
the solvent structure effects, influence the van der Waals
force between two semi-infinite hydrocarbon half-spaces
(i.e., very thick layers) interacting across a region of water
of thickness 2a, if the results are calculated within the zero-
order approximation.

Hydrocarbon subphase is supposed to be dielectrically
homogeneous, characterized by an effective dielectric con-
stant €,, = 2-6.>” For the aqueous subphase, which includes
hydrated lipid headgroups, the validity of Eq. (10a) may be
assumed, corresponding to Eq. (10b) with only the lowest
n = 1 mode being considered. In this work, we have chosen
the parameter valuestobee = 80,6, =2-6,and£ =0.3or
1.0 nm. 12-14,15-28

Equation (42) suggests that for small interfacial separa-
tions, the only significant contribution to the integral over
the magnitude of the wave vector Q comes from the region of
large Q values of the integrand giving

© 2

Vo(a—0) =ki x dx ln[l—(i"—:jf—)

4m(2a)* Jo €. + €.

X exp( — Zx)] , (45)

where we have x = Q 2a. Conversely, for large interfacial
separations, the major part of the interaction free energy
stems from the small wavelength values of the integrand,
yielding

© £\2
Vo(a—*w)z__k.Z‘S_EJ‘ xdxln[l —(6'" 6)
47 (2a)° Jo €, +€
X exp( — 2x)] . (46)

Similar expressions could have been obtained from Eq. (3)
with €, =¢,,, if values €, =€ and €, = €_ were used for
a— o and a—0, respectively.

Equations (42) and (45) obviously represent only the
two limiting cases. In order to study the entire functional
dependence on the interlipid water layer thickness 2a of the
zero-order van der Waals interaction, the complete integral
expression (42) must be evaluated numerically.

The insert to Fig. 2 shows the result of one such calcula-
tion. It presents the ratio of the effective value of the Ha-
maker coefficient, evaluated for the cases of intervening me-
dia 2 with a local £ = 0 or nonlocal £ > O dielectric response,
respectively. The relative Hamaker coefficient H(& #0)/
H(& = 0) is seen to vary strongly with the interfacial separa-
tion 2a, attaining in our case a limiting value of 0.27 for
closely opposed surfaces; this is due to the fact that the val-
ues of the long wavelength dielectric constant of the water-
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FIG. 2. Logarithm of the leading, zero-order contribution to the van d
Waals free energy of interaction between two semi-infinite regions [cf. Eq;
(42)1], as a function of the interfacial separation 2a. Dotted curves corre:
spond to the results of a standard evaluation of van der Waals force (loea]
approximation with £ = Oand €, = 2) and were obtained from Eq. (3) with
€, =80 and €, = 6 for the upper and lower curves, respectively. Dasheg
curves refer to the situation encountered with structurable solvents. Th
result from numerically solving Eq. (42) using €,, =2, ¢ =80, ¢_ =§
with £ = 0.3 and 1.0 nm for the upper (- - -) and lower (- - —) curves, re
spectively. Transition between the regimes corresponding to the high ( upe
per dashed curve) and low (lower dashed curve) effective dielectric con:
stants is clearly seen, the range of transition depending on the choice of the
correlation length £. The insert shows the ratio of the relative effective Haj
maker constants evaluated for the cases of a structurable and simple, strug
tureless media—H (£ #0) and H(& = 0)—respectively, as a function of' thé
dimensionless separation 2a/&.

filled €, = 6 and of the hydrocarbon regions €,, =
relatlvely similar. '.

Both limiting expressions (45) and (46) can be com
bined into a simpler phenomenological approximation

kTS *
Vo(aaw)zm A x dx ’;
f— 2 .
X ln[l - [-————————E'" Con (a)}
em +Eeﬂ'(a)
X exp( — 2x)] , (47

where the effective dielectric constant profile €.4(a) has
been introduced as w

(@) = €[ 1+ (e/e, — Dexp( —2a/6)]~". (48)“?

Albeit purely phenomenological, this result describes cor=
rectly the variation of the effective Hamaker coefficient for
any values of the interfacial separation, provided that t
validity of Eq. (10) is granted.

The precise value of the ratio H(£ #£0)/H (£ =0)
very sensitive to the choice of parameters ¢, €_ , €,,, and § i
Figure 3 illustrates this. For a special case of identical values:
of the high-frequency dielectric constant of water and of t
static dielectric constant of hydrocarbonse . = ¢,,,, it sho
that the calculated van der Waals interaction is rather diffe
ent if different values of the correlation length & are use
This contradicts the classical result [Eq. (3)], which p
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FIG. 3. Logarithmic plot of the zero-order contribution to the van der
Waals attraction between two dielectric bodies whose dielectric constants
are equal to that of the intervening solvent in the high frequency range
€, = €, = 6. The uppermost curve pertains to the local model [Eq. (3)]
¢=0withe, = 80 and €, = € = 6, and the two dashed curves illustrate the
behavior typical of systems in which the solvent is structured and character-
ized by a nonlocal dielectric response. The range of the solvent structure
effects is seen to be related to the correlation length, which has been taken to
be £ =0.3 and 1.0 nm for the upper and lower curves, respectively. The
insert illustrates the variation of the normalized Hamaker coefficient as a
function of the dimensionless interfacial separation.

dicts the zero-order van der Waals interaction in such a situ-
ation which always vanishes.

Moreover, our results for the case €, = ¢,, = 6 suggest
(Fig. 3) that the spatial dependence of the zero-order disper-
sion interaction across structurable solvents does not obey
the classical, simple inverse second-power law at short dis-
tances; therefore, it can also not be represented by an expres-
sion of the form similar to Eq. (47). Careful examination of
the free-energy difference in the limita—0Ofore_ =¢,, =6
rather suggests that for structurable solvents the following
lowest order approximation for the interfacial attraction of
van der Waals type is appropriate:

kTS (1—¢€, /€)?
4mE? (14+€_/€)

X %[1 — (4B[C—n(4B)] — §4ﬁ], 49)

where C is the Euler constant (C~0.5772) and
B>=[1+ (e, /€)]ia*/E2. (50)

Expression Eq. (49) was obtained from Eq. (42) in the
specified limit, where all the integrations over Q can be eval-
uated explicitly.

This conclusion is vindicated by insert to Fig. 3. Here,
the ratio of the effective Hamaker coefficient evaluated for
§=0 and £ >0, respectively, is shown to vary, albeit not
very steeply, with the interfacial separation as the latter ap-
proaches zero.

Our model, which accounts for the solvent structure in
terms of the corresponding spatial dielectric dispersion, thus
yields results which for closely opposed surfaces differ qual-
itatively from those of the classical van der Waals force the-

0=

ory. This is a general truth that has nothing to do with our
particular choice of the dispersion function (10a): It can
even be shown that different forms of e(k) give qualitatively
similar results for the variation of the ratio H (& #0)/
H (& = 0) with the interfacial separation.

This indicates rather unambiguously that structuring of
the solvent leads to a reduction of the dispersive force
between two charge-free media separated by an ion-free sol-
vent.

In the nonlocal electrostatic approximation used in this
work, such a diminution of interfacial van der Waals attrac-
tion can be shown to originate from an admixture of the bulk
modes to the surface modes, as a result of the nonlocal dielec-
tric response within the structurable region.*® This is tanta-
mount to saying that the fluctuations of the induced surface
charge in the dielectrically inhomogeneous media become
volume-charge distributions, cease to be bound to the very
surface, and begin to penetrate the solvent, owing to the in-
trasolvent coupling. Interestingly, similar conclusions have
also been reached by other authors. Mitchell and co-
workers,*! e. g., have made the same observation based on an
entirely different model, stemming from the theory of li-
quids.

As a caveat it should be noted that the consequences of
the nonlocal dielectric response and of the local dielectric
inhomogeneities are by no means the same.>® The former are
associated with the solvent structure and have been dealt
with in extenso in the present work. The latter that are the
topics of several articles by Parsegian and co-workers**+2
and arise e.g., when the chemical composition or properties
of one of the (semi-infinite) interacting bodies vary with
separation. The latter local dielectric inhomogeneities cause
the interaction free energy to exceed*>*? (rather than be-
come smaller than) that of the comparable homogeneous
system, since the local inhomogeneities mimic the effect of a
diminished effective interfacial separation.

Last, but not least, we wish to stress the correlation
between the meaning of our present results, which pertain to
the attractive interfacial force and imply a negative contribu-
tion from the solvent effects, and the results of numerous
investigations of the interfacial repulsive solvation force. Al-
beit in principle, different in sign, the former may contribute
to the latter and, as far as this work is concerned, indeed
represents the other side of the same coin—in both instances
oneis encountering the consequences of the solvent’s incapa-
bility to respond to an imposed field locally.

What remains to be resolved is the question of the rela-
tion between the results of this work and the experimental
work on interfacial van der Waals attraction. Little doubt
exists that, at least for aqueous solvents, the dielectric re-
sponse may be adequately, albeit phenomenologically, de-
scribed by expressions similar to Eq. (10). In consequence,
the solvent effect must be concluded to reduce the standard
van der Waals attraction by an amount which depends on
the interfacial separation and solvent parameter values. Un-
fortunately, however, neither are as yet properly established,
so that detailed quantitative conclusions about the effects
studied in this work are to date impossible. Further difficulty
may arise from the fact that the nonstandard contributions
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to van der Waals forces, e.g., such that are caused by the
correlation effects, probably become greater rather than
smaller due to the solvent structure effects.

Nevertheless, our present calculation should be consid-
ered useful and informative because of at least two reasons.
Firstly, it points to one, doubtlessly existent, consequence of
the solvation phenomena in the realm of van der Waals
forces. And secondly, it represents a further step towards a
consistent generalization of the theory of dispersion forces in
a way which would simultaneously account for temporal as
well as for spatial dispersion within (and between) interact-
ing bodies. Our next contribution will deal with the imple-
mentation of the effects of the fluctuations in ionic distribu-
tions into the present model.

In summary, we have shown how the effects of solvent
structure can be accounted for within the framework of a
generalized electrodynamic theory of van der Waals interac-
tions, by allowing for the nonlocal dielectric response of the
medium. We have found that these effectively diminish the
dispersive attraction between interacting noncharged bodies
if the interfacial separations become comparable to the sol-
vent structure correlation length. We have derived an exact
zero-order expression for the calculation of such interac-
tions and have proposed simple phenomenological approxi-
mations that can be implemented into standard expressions
for the interaction free energy. Work dealing with van der
Waals attraction between dielectrics immersed in a structur-
able electrolyte solution is in progress.
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APPENDIX A
We use the Poisson summation formula*® in the form
w k, _
1 , cosk,z 1 chQ(|z| — 2a) .zl <2a.
a .S (k2+Q) Q sh(Q2a)
(A1)

The related logarithmic summation formula is
© p

n=1 k i Q 2a
It is important to notice that all summations over the vector
component k, in Egs. (34) and (25) reduce to different
variants of the above two expressions, provided that the di-
electric response function is of the form of Eq. (10a).

APPENDIX B

Calculations outlined in the text are based on using Eq.
(10a) as a definition of the dielectric response function in the
structurable part of the dielectric medium. Similar deriva-
tions, however, can also be repeated for media to which the
simple Debye response function applies:

e(k)y =€(1 +x%/k?).

Here « is the inverse Debye screening length.
If, say, Eq. (B1) is used instead of Eq. (10) throughout

(B1)
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the calculation, this results in the following zero-order va
der Waals interaction free energy expression:

© . 2
Vi(a) = K15 f ngln[l _(ff_ﬂ)
47 Jo eu+¢€,0
kTVK3

X exp( ——4ua)] [ 3

(B2}
with 4®> = Q% + k%

The first term in Eq. (B2) describes van der Waals inter.
actions experienced by two semi-infinite bodies immersed ir
an ionic solution.** The second describes the standard De.
bye—Hiickel, electrostatic contribution to the free energy of
such a system.*’ It is worth noting that a similar expression
for the free energy of screened van der Waals interactions is
also obtained, if the more common approach,’>%484° based
on the linearized Poisson—-Boltzmann equation, is used i m
stead of the specular reflection model.

The total free energy of an electrolyte solution as glven
by Eq. (B2) thus consists of a surface (van der Waals) term
and of a bulk (Debye-Hiickel) term, the latter being well
known from the theory of ionic solutions. By similar logié,
the volume term encountered in Eq. (44) can be interpreteg
as a contribution to the bulk free energy of the dielectrfc
medium described by the dielectric function given by Eq
(10a).
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